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I. INTRODUCTION

The far-field plane wave backscattering cross-section, or the radar
cross-section (RCS? of a finice length, perfectly-conducting, solid,
circular cylinder on a planar, uniform impedance surface of infinite
extent is investigated in this report. The cylinder is oriented such
that its axis is perpendicular vo the impedance surface as shown in
Fig. 1. An impedance surface at z=0 implies that the total electro-
magnetic field must satisfy the impedance boundary condition [1] there.
The region corresponding to 20 is free space, and the value of the
surface impedance, Zg at z=0,is taken to be a known complex function

of the frequency of the incident plane wave.

In the present study, we are primarily interested in calculating
the RCS ¢of the cylinder in Fig. 1 for the range of aspects corresponding
w0 25%¢1<88°, It is assumed that the length, x, of the cylinder is
larger than its radius, a, and that ka is at least a wavelength or
more; here k is the free space wave number (k = %13 A = wavelength).
The method of analysis employec in this report for calculating the RCS
is based on the geometrical theory of diffraction (GTD) [2]. Although
the GTD is an asymptotic high frequency ray technique, it is known to
be extremely accurate even for moderatelv high frequencies. Uetails
of che GTD analysis for estimating che RCS are presented in Section II.

z
oA
FINITE LENGTH T li_l\ . INCIDENT PLANE WAVE

[ ]
CIRCULAR CYLINDER ’ 8 N_-
e
N
L // X

1
OF LENGTH = £ AND :
|

O -t ,7I°f —> o

RADIUS = a
UNIFORM IMPEDANCE SURFACE

Fig. 1. Finite circular cylinder on an
impedance surface.

Numerical results are presented in Section III, wherein the RCS
of the cylinder in the presence of the impedance surface is compared
with the RCS of an ideniical diameter cylinder in free space without
the impedance surface; the length of the cylinder in free space is
selected to be twice that of the cylinder on the impedance surface.
The RCS of the cylinder in the presence of Zg is much higher than that
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of the cylinder in free space. Also, the RCS increases rapidly with
increase in frequency. In particular, numerical results for the RCS

are presented as a function of the aspect 67(25°<67<88°) for two types
of polarization, and for a given set of frequencies. The two types of
polarization correspond to the case when the incident electric field
vector lies either in the plane of incidence or perpendicular to the
plane of incidence, respectively. The former is commonly referred to

as the parallel polarization case, whereas the latter is commonly
referred to as the perpendicular polarization case. In the absence of
Z., the RCS of the finite cylinder in free space is generally higher for
tﬁe parallel polarization than for the perpendicular polarization case;
in the presence of Z., the cylinder RCS for both polarizations is
generally of comparag1e magnitude. In particular, the RCS of the
cylinder on Zg is very much governed by the reflection coefficient
associated w1th the surface 1mpedance Z The behavior of the reflection
coefficient associated with Zg is 111ustrated in Section II over the
range 25°<1<88°, for the selected frequencies of interest. A discussion
on the behavior of the RCS of cylinders with and without Zg is given in
Section III. The RCS in the vicinity of end fire (si+0) is not presented
as it is not of interest in the present study. The end fire RCS may,
however, be readily estimated to a high dearee of accuracy via the
physical optics approximation [4].

II. ANALYSIS

As mentioned earlier, the polarization of the incident plane wave
is assumed to be either in the nlane of incidence or perpendicular to
the plane of incidence. When the incident electric field vector lies
in the plane of incidence (x-z plane), we will define this to correspond
to the acoustic hard case (with respect to the edaes Q7 and Q; of the
cylinder in the x-z plane); whereas, we will define the other polariza-
tion to correspond to the acoustic soft case (with respect to the edges
Q) and Qp). The acoustic hard case may also be viewed as one for which
the incident mannet1c field is polarized perpend1cu1ar to the plane of
incidence. Let Uﬁ denote the incident field.*

i E ilkx sin o1 + kz cos ei]
h h

The subscripts s and h refer to the acoustic soft and hard cases,

respectively, Thus, U. denotes a y-directed electric field; whereas
U denotes a y-d1rectea maanetic field. The superscript i refers to
1nc1dent field quantities. A_ stands for the known constant complex

]

amplitude of the soft and hard type incident fields, For large ka,
the dominant contributionsto the backscattered field are those resulting

% -
An e‘wt time dependence is assumed and suppressed throuqhout the
analysis.
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from the process of double-reflections, edge diffraction, and from the
first few interactions between the edge diffracted fields and the surface
at z=0, The contribution to the backscattered field from surface rays
which propagate around the cylinder is negligible for large ka; these
rays have been excluded in the present analysis. In the present case, the
edge diffracted rays are produced via the diffraction of the incident plane
wave by the circular rim of the end cap of the cvlinder at z=8. The
specific double reflections, single edge diffractions, and the orders

of edge diffraction-surface reflection interactions which have been
retained in the present analysis are illustreted via the pertinent

rays that are associated with these interactions in Figs. 2(a), 2(b),
2(c), and 2(d), respectively. With no loss of generality, the RCS is
calculated in the x-z plane for convenience; thus, the rays depicted

in Fig., 2 must also lie in the x-z plane. Figqure 2(a) indicates the
doubly reflected rays which contribute to backscatter; these rays

are analogous to those present in the corner reflector problem. Q,

and Qg denote the points of reflection on the cvlinder and the impedance
surface, respectively. The incident ray at Q reflects enerqy along

the ray path QaQg such that the second reflection at Qg 9generates a
reflected ray in the backscatter direction, and vice versa. Conse-
quently, Fig. 2(a) illustrates the existence of two reciprocal (doubly
reflected) ray svstems; actually, there exist a doubly i'i{inite set of
the doubly reflected ray fields (corresponding to these two reciprocal
ray systems) which contribute to the backscatter, because every point
along the cylinder (x=a; y=0; 0<z<&) constitutes a point of reflection.
Figure 2(b) indicates the interaction between sinaly edge diffracted
rays and the surface at z=0. In particular, the incident ray at the
edge Q7 produces a diffracted ray which strikes the impedance surface
at Qg lo produce a reflected ray in the backscatter direction, and vice
versa. Thus, Fig. 2(b) also describes two reciprocal ray systems, each
of which yields identical field contributions in the backscatter
direction via the reciprocity theorem for electromagnetic fields.

One must include the effecls of both reciprocal ray systems in Fig.

2(b) for evaluating the backscattered field, and since the fields
associated with each of these reciprocal ray systems is identical in
the far zone, the total far zone backscattered field corresponding

to only these interactions is siinply twice that given by either of

the two reciprocal ray interactions. The field contributions corre-
sponding to Figs. 2(a{ and 2(b) are analyzed here by first picking a
field (or observation) point in the near zone (so that the doubly
reflected, the diffracted-reflected, and the reflected-diffracted fields
propagate along slightly non-parallel or convergent ray paths to the
field point), and by then taking the limit of this near field quantity
as the field point recedes to infinity (or far zone); the 1imit now
gives the backscattered field corresponding to Figs. 2(a) and 2(b).

In the near zone, only one doubly reflected ray of Fig. 2(a) contributes
to the field there; this simplifies the analysis. Fiqure 2(c) indicates
the incident rays which strike the cylinder edges at Q; and Q, to
produce singly edge diffracted rays which emanate from Q; and Q.



Multiple edge diffraction effects between Q1 and Q; are neglected;
these multiple interactions may be exc]uded for large ka. For
moderately large values of ka, these interactions are still quite

small in comparison with the sing]y diffracted fields. Finally, Fiq.
2(d) illustrates the ray system in which the incident field at Qr
illuminates the edge Q1 via reflection from Qp; this in turn produces a
diffracted ray from Q7 which strikes the surface at Qp to produce a
reflected ray in the backscatter direction.

Y T P e

() ' Qp
(d)

] Fig. 2. Dominant rays for far-zone backscatter
calculations.,

‘ The new uniform GTD curved edge diffraction coefficient of

] Kouyoumjian and Pathak [3] is employed to calculate the edge diffrac-
{ tions at Qp and Qp, On the other hand, the Fresnel reflection

3

4




T AT T AT T

i

coefficients associated with the impedance boundary at z=0 are employed
to calculate the reflection at Qg and QB The reflection from Qa on
on the cylinder is calculated as usua1 in terms of the reflect1on
coefficient for a perfectly-conducting flat surface which is locally
tangent to the cylinder at Q. It is noted from Fig. 2(a) that

Qa*Qy and Qg*QR as the doub]e reflection shadow boundaries are
approached. Consequently, the edge diffraction-surface reflection
interactions of Fig. 2(b) take place alonqg the double reflection
shadow boundaries in the far zone. In the far zone, the unshadowed
region where double reflections are present shrinks to a thin line
(dot-dashed reference line). As mentioned earlier, this far zone re-
sult (i.e., backscattered field corresponding to Figs. 2(a) and 2(b))
is obtained via a careful limiting operation on the corresponding near
field quantity.

We will first analyze the interactions in Figs. 2(c) and 2(d)
in a straightforward manner. The slightly more complicated analysis
of the interactions in Figs. 2(a) and 2(b) will follow subsequently,

Let Ud] and Ud2 refer to the fields diffracted from the edges Q7 and
! .h d1 d2 o
Q2, respectively. Then, Uo" and U™ ar - given in terms of GTD as:
h h

(2) WAyt (1) DU (61.97) el ~<

s s (W) B () Ve ey

h h h
and

. -iks

(3) ng””% (Q, 2)-\/ zToez*S) e

Fig. 3. Angles and distances associated with
Fig. 2(c).
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where ¢ = 7- 6' and 42 = 1/2 - 6! as in Fig. 3. The far zone distances
S1 and sg measured from Q1 and Q2 are also shown in Fig. 3. The caustic

d1stance Pe and pgp are
(8); (5) poay = =—2— 5 p., = = ——r :
€l 5 sins! ez 2 sineg’

The DS (psp') in (2) and (3) is the edge diffraction coefficient given

h
in reference [3]; in the present case DS (y,0') of reference [3] re-
h
duces to the Keller form:
« T
-1 1 . \
1'(— sin 1)
(6a) by (yw') = & E " ‘ = ‘ =
ki il 8 i o !
h cos - - coS 5 cos e cos '
with

(6b); (6c) 8" = y¥y' 3 andn = 3 for a local right angle wedge
at Q] and QZ'

rdr

Next, we let U denote the field associated with the reflected-

h
diffracted-reflected ray in Fig. 2(d). It can be easily shown that

- 12 . 0 -iks
(7) UEIT U] (Q)) - [Rg(Qg)| D (e‘.e’)\/—-—c———— e 7
h h h | h 53 (pg * 53)
where
. . =] i .
(8) U; (x,2) = A, e il kX sine - kzcose ] _ U; (x, -2)
h h h

and the distance S3 is shown in Fig. 4.



(IMAGE OF Q,)

Fig. 4. Angles and distances associated with
Fig. 2(d).

The caustic distance p. 1s identical to pey Of (4). Ds (6',8") is

. : h
given by (6a) with y = 8! and y' = 6'; also n = 3/2 as before.
Finally, the surface reflection coefficient at QR is given by:

cos o) -"Jer(zs) - sine’

cos 8 +.Jer(zs) - sinzei

(9 R(Qy)

i o2 a1l
EP(ZS) cos 9 -[r(ZS) - sin“ 8

(10) R (Q) _ ,
EF(ZS) cos 6! +J;r(zs) - sin2 6!

wherein e.(Zs) is a given complex funct1on of the surface impedance Zg;
since Zg 1is dependent on the frequency, ¢ ) would also be automat1ca1]y
frequency dependent., On the other hand, 5 depends not only on the

h
frequency, but on the angle of arrival 81 as well, The behavior of RS

p h
as a function of &' for a given set of frequencies is presented in



Figs. 5-14; these values of Rﬁ are calculated via (9) and (10) by

employing given values of E,.(ZS) at the appropriate frequencies.
Both, the amplitude and phase of R_ are illustrated in these

R

figures.

Next, we analyze the iateractions in Figs. 2(a) and 2(b) by first
picking a near field point in which case only one doubly-reflected ray
of Fig. 2(a) contributes to the field; let it's field be denoted as

Ugr. For the sake of definiteness, let the near fiecid point be above

h
the dot-dashed line of Fig. 2(a). Thus,

i rr i Py -ikd,  _ .
(]])’ (]2) US ¥ RS (QZ) as (QC)JO—r—;Te N DY' = a/z sing .

h h h
The distance d is from Q. to the near field point. Q, and Q. are points
of reflection on the sur?ace 2=0 and the cylinder, respectively. The
caustic distance ., for the ray reflected from the cvlinder (after
reflection from z=0) turns out to be identical to cey of (4). In the
far zone limit, d»sjy.

Now, let US™ and UL9 denote the diffracted-reflected, and the

reflected-diffracted ray fields corresponding to Fig. 2(b), respectively.
In the far zone, Udr = Urd, In the near zone (where (11) is evaluated):

A

3 { 0 -iks!
(13) 09Tl (0,) R (Qp) D, (67400 ) fmeimee @ T,
S s ] S R S 1°71 o+ s!)
h h h h S1 We ™ %

and Pe = Pal of (4). Thg distance si is from Q] to the near field point.
Also, ¢} = 6! and o]<n-e1 in the near zone; however, ¢]+w-e1, and
si*s] (also s]*w) in the far zone. When the far zone limit is taken,

-
e

ey of the ray tubes

one may approximate the transverse spread factorJ

by JE? in the field expressions (for the far zone condition s>>p). s and
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p are the ray and caustic distances, respectively. Hence, s could
be s, S, OF S and o could be Pal® P OF Py etc. The DS in (13)

h
ie taken from reference [3] to be:

'1—' l] sin ﬁ-- F[kLia(¢-¢;)]
(14) D (¢'|.¢'|) = | '

- T
h VZ k L cos T - cos¢] n¢]

F LK™ (6% 1]

| | y

+ cot:(Tr _ (¢] ) F[kLroa(¢+ ¢j i
l

. n+ (¢]+¢ )

with

TR R AT

(15a; 15b) a+(s) =2 cos2 EEEE:_E. 3 a(g) =2 cos2 %- 3

and n = 3/2 as before for a local right angle wedge at Q] In the
present problem, F{kL' a(¢-¢ )] and F[kLr"a (¢+¢ )] may be replaced by

unity since kL’a(¢ -$') and kLr"a (¢¢¢‘) are much larger than 10 due to
the fact that the 'backscatter direction is not only far from the
incident shadow boundary but the incident and reflection shadow
boundaries are sufficiently far apart. One notes that F(x) essentially

becomes unity when x > 10; when all F(x) terms become unity, the D of

Faalh oo aoca tnl o e e s A

h
(14) reduces to the Keller form of 6(a). From reference [3], L"° j

given by
ro S{(pc+5{)(p¥)(o£)
(o;+si) (o£+5i)

Y

o

In our problem, p?‘” . p; =0 and P =Pp = -—-—11—-f- » SO that
2 sine

(16) L' - s .
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Let ¢7.= 7 - ei - ¢ where ¢ is a positive number however small,
"¢; = 687 as indicated previously. Then D_ of (14) becomes

-1—14T- 1 T
(17) D, (67.0%) & & n 2w
; 1'% /'Z"nk-“ { o T
CO0S — - cosii= &)
\ n
+ ]—n- [cot e A F[kLrOa(¢]+¢]')]}
with
e
(18) FlkL™a(o,%09)] » JD/;r—kLma(q)]w]')l
ro i%j' i%'+ ikLroa(¢1+¢i)
- 2 |kl a(¢]+¢i) e ioe
J
and
2
o _ 211 _ ¢
(19) a(¢]+¢]) = a(n~e) = 2 cos = & 5
Therefore,
[rks! ik
(20) F [kLroa(¢]+¢]')] x w‘J > Leed ks :2
p"
Also,
(21) q cgzsinei
so that

S
!
b
g
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-l gip
n n

(22) D (67501)% ¥

5 4
i
“"'— T =2 8
h 21k (cos § " cos[j-TT——-])

—i%- i
e JS
—— ot—t kzsme .
2n 27k 2 Ian

t

Incorporating (22) in (13) yields a near field value for U"‘d ; one

h

Udr in terms of

h

and ¢] is chosen to be o) - e. The choice

could similarly obtain a near field expression for
DS(¢],¢i) where ¢3 = - 5!

h .
of g5 E 7 = q‘ - ¢ and ¢] = 8' - ¢ ensures that the near field point

where U'”d + U "is evaluated is indeed in the region where the doubly
h h
reflected field U;r exists. Consequently, the total field within this

h
region (which collapses to a line in the far zone as s]+w) for the

interactions in Figs. 2a and 2b is the far zone 1limit of

dr rd rr
US + US + Us .
h h h

When DS(;],;i) is simplified in the manner that DS(¢],¢i) of (14) is

h h
simplified to obtain the expression in (22), and ¢ is allowed
to approach zero as S (far zone), the following far zone result for

Ugr + U"d + U:r is obtained:
h h h
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i?w

rr dr rdl - i2ka sin ei i%'{ka sin ei e'ikR
(23) g + Ug + US v+ A Rs(QR) e e 'g - i R
h h h h h
j= r'l .o
4 ' —sin —
+2A R(Q.) i2ka sing e _ %n n _
s s'°R 2K | 61
h h " cos %-- cos T ——
L
ik o
1 cos - ! , 5 ikR
t7m | 2
sin ﬁ-‘ VZ sin e :
]

Similarly, the far zone results for Ug], ng and Ugdr in (2), (3), and

h h h
(7) yield:
:
dl1 , ,d2 rdr 12k[a sin o' + 1 cos 6 ] ' B
(24) US + US + US ~ AS D (¢]s¢’]) m
h h h h h \
i2k[-a sin 6" + 2 o] e
o As e12 [-a sin + & cos ]Ds(¢2'¢2) ; J ? i
h h i2 sin 8
”1
ol - 2 ) i
{R (QR)l 12k[é sin cos ]D (e ; a g
h h h y2 sin @ !
J
e-ikR
R L ]
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The following relationships have also been employed in obtaining (23)
and (24); these relationships are obtained purely from geometrical
considerations which are valid in the far zone.

-iks " .
. 1 L . i i .
ui(g,) e " A e21k[a sineg + & cos 6 ] o~ TkR
st Sq S R
h h
-iks . . .
. 2 ; . i j -1kR
i e 2ik[-a sine +12cose ]e
US(QZ) 5, A Ase R
h h
-iks . : .
Ui(Q ) & 3 " A e21’k[a sine' -2 cos 8'] e TkR
s'+] Sy S
h h
-iks . .
. 1 . . i -ikR
B e 2ika sine e
Us(Q]) 51 o As S R *
h h

The distance R which occurs in the above expressions is shown in Fig. 3.

The RCS is given by g where

h
. 2
(25) 5 = Mmoo p2pndl o d2  yedr e dr L yrd A
S R S S S S S S 3
h h h h h h h h

The various field contributions to o  which appear on the RHS of (25)

h
are given in (23) and (24).

Since we would like to compare og with the RCS of the same diameter

h
cylinder of length 2% in the absence of Z_, the problem of Fig, 15 which
corresponds to the latter case is trivia]?y analyzed. Thus, denoting
the RCS for the finite length (= 22) cylinder in free space byﬂ?;, we

h
33
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express gs in terms of the backscattered ray fields as:

N
. 2 2
N Tim 21| .d1, ,d2 , d3 b
(26) O = pooy 4 TRO| UG+ U+ U ,'/%ASI
h 1 h h h | h’
Ug] and Ud2 in (26) correspond to the edge diffracted fields emanating
n “ d1,2
from Q; and Q,, respectively; they are identical to U " in (2) and (3).
h
The field US3 which is the field diffracted from Qg is similarly given by:
h
5 -iks
(27) By (03) ¢3.¢3)J—f—3———7 e
h h S3lee3 * 53

which in the far zone reduces to:

. . i i A e ———— -ikR
(28) Ud3 ~ A e12k[a sin @' - % cos 6 ] D (61’61) E e

S ' Lo
h ; ; JZ sin 6

P A Y e TS PEeTeEr e (TS e

In deriving (28) from (27), the following far zone approximation is

: employed:

] [ o3 -iks, i2k[a si AN 61]
! (29) (Q ) e e '&: A 61 a sin - COS

:1 h ¥ 153te3™s h

- Ay e ¢~ TkR

Pe3 "R

- a N 3 .
3 where Pa3 = ey Also, ¢3 =6 in this case, and DS (¢3,¢3) is
. h

.. given in 6(a) with 65 = 6",
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Fig. 15. Dominant rays for RCS calculation of a
finite length cylinder in free-space.

IIT, NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are presented for the RCS of
a circular cylinder on a uniform impedance surface (whose surface
impedance = Z¢)as in Fig. 1. The RCS for the soft case (i.e., the
case for which the incident electric field is parallel to the edge
of the truncated cylinder in the x-z plane) is denoted by o., whereas
the RCS for the hard case (i.e., the case for which the incident
electric field is perpendicular to the edae of the cylinder in the
x-z plane) is denoted by op. Both{ og and oy are presented as a
function of the angle of arrival ' of the incident plane wave; the
range of 61 chosen in these calculations corresponds to 25°< 61<88°,
Numerical results for o¢ are presented at selected frequencies, namely

at 1, 2, 4, 8 and 16 GHz, respectively, in Figs. 16-25 for the case
£ = 0.5 meter, and in Figs. 26-33 for the case £ = 1 meter; here £ =
length of the cylinder. Furthermore, the values of cﬁ are compared

against 35, where gs and gh are the RCS of the same diameter cylinder

(as in oshcalculations) of length 2% in free-space (see Fig, 15); the
h
subscripts s and h in aﬁ have the same meaning as in oﬁ. It is noted

that the diameter of the cylinder ip all the cases is fixed at the
same value which is chosen to be 0“ meter. The "a" part of Figs. 16-
33 indicate the values of og or op, for the RCS of the cy]indig on Z,
whereas the "b" part of these figures indicate the values of dg or §h
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for the corresponding equivalent cylinder in free space. The units of
g and 3ﬁ are dB/,2 in these plots. The values of the reflection

h
coefficient Rg associated with the impedance surface are given in

h 2
Figs. 5-14 (in Section II) as a function of ¢! for the selected
frequencies of interest; these values of RR are employed in calcu-

lating oc.
h

Certain observations concerning the behavior of cR and J. can be

i

be made from Figs. 16-33., It is noted in general that cﬁ is much higher
than 35; thus, it is concluded that the presence of the surface

impedance Zg is to effectively increase the RCS of the cylinder over
that of the "equivalent" cylinder in free space. It is also noted that
a’h is generally higher than d.; in contrast, og is in general very
slightly higher than ¢, except near 6'= 90°, Furthermore, the behavior
of Oﬁ is very strongly governed by the behavior of the impedance surface

reflection coefficient Rﬁ' For example, R, in Figs. 10-13 indicates

a suddent dip in amplitude around 8! = 85°; this effect is also mani-
fested in the piots of o, which show a significant dip near 61 = 85°,

0f course, 0, increases on either side of this dip (near 81 = 859,

On the other hand, B sie generally very slightly higher than o) except

for 61 near 90° wheré o, decreases significantly. Since the value of

0s is calculated over 280 p1<88°, the significant decrease in cg for

o1 near 90° is not apparent in the present plots for the higher freguencies;
it is believed that this is due to the fact that at these higher frequencies
3¢ decreases significantly only for 61 extremely close to 90°, i.e., in

the range 88°<6'<90° which is excluded in the present calculations. The
values of o and op, in general show a rapid, but very small size
fluctuation at the higher freguencies; in fact, -, and o, tend to

be fairly constant over 25°:67<88° at the higher ?requencies except

near 61 = 85° for oy and near 61 = 90° for o., respectively. 1In

contrast, cﬁ 1indicates higher size fluctuations which of course

become more rapid at the higher frequencies as one might expect
from GTD considerations. Finally, the levels of o5, oy, d¢ and
81 increase with increase in frequency in each case, since the
eHectrica] surface area of the scatterer effectively increases
with increase in frequency of the incident plane wave,

36



OB SOFT

20.0
[

_J:ll!TjTIITIIITIIIITIIIllTITlll]-lT]llW
®0.0  30.0 40.0 50.0  60.0  70.0 0.0  90.0

THETA

O
[

Fig. (16a). (os/xz) in dB vs ol
at ' f = 1 GHz, and &

THETA in degrees
Som,

37



il A NI et et o o . 3
ﬂﬂ
=
&
o]
D"—l
-
o B
:' | S S Y 10 TPl
o <0 30.0 Lo. 50. B0. 70.
W HE T
-
aa
D—
ﬂ‘l_
:
4
? % -
oJ
I !
: ]
l' 4
I.
E Fig. (16b). (55/x2) in dB vs 61 = THETA in degrees
E: at f =1 GHz, and & = .5 m.

38




UB SOFT

20.0
L

l

o

0.0

TT T T T I T T T T T T T T T T T T T T T T I T T 1T T T 111
3.0 40.0 50.0 60.0 70.0 80.0 90.0

THETA

2Y in dB vs o1 at f = 2 GHz,

Fig. (17a). (cg/2%) in
and £ = .5 m,

39



DB SOFT

r

1.

-0

LT

|

Fig. (17b). (8‘5/1\2) in dB vs 61 at f =2 GHz, and %

40

.5 m.



e T TR Y (W eppg wm
e, ¢
L J

.
in
~
- o]
3‘—4
' ) &
E ' ‘_-‘:’;
-‘ ;J_\'.':.\
DN
) .
- 1 -
A B
L \..3__‘
: -
\.é T T T T T T T T T I T i I T T T T T T T T I Y T T T T T T T T T
0.0 30.0  40.0 S0.0  60.0  7u.0  80.0  90.0
: THETR
: Fig. (18a). (0g/32) in dB vs 6 at f = 4 GHz, and &= .5 m.

- 4i




30.0
1

1

|

20.0
1 1 1 1 11
—

DB SOFT
1ﬂiﬂ

L1

EERERRENEARRNL AR AR AR
¢ 30.0 4g.0o 0.0 60.0 70.0 80.0 90.0

THETA

nQ. 0
L3P

1

I

-10.0

Fig. (18b). (¥./22) in dB vs o1 at f = 4 GHz,
and 4= .5 m,

42




A

= |
i 4
=
. 1
? -1
» _.—!
bl
=
iy -
o e o
LL_ -—
o
i N o
) D2
{ =K
- E
3' -—
Lol y
L =
¥ i b vy 1 trr+1rrv 11+ T0 1T 7P 1T PP 1T Ty T T T v T T T vPT T TT i
St S0.0 30.0 4g.0  50.0 60.0  70.0  80.0  90.0
: . THETR
] }
3 Fig. (19a). (o</22) in dB vs i at f = R GHz,
ana L= .5m.
b L
4 . 43
i




30.0 uo.0
S

|

20.0
L1

DB SOFT

10.0
| .

l

.0

s 1Tt 1Ttrrrtry1r 3y rrr1i1rrrtirrryrrryrvirrirnyrrnrd
| $0.0 30.0 40.0 50.0 680.0 70.0 80.0  90.0

THETA

Fig. (19b). (5</»2) in dB vs 81 at f = 8 GHz,
and ¢ = .5 m.

\
1
o

44




i
[
O‘
o
D —
tw
i1 3 D"
R o
-
" -1
i ?:
)
. =
i=
| -2
DL ide TD
ek
o B
3
i | a7
i O -
e \3__
| =
L <
i, A
v ]
o —4
3 <D
=l
R L
: -
f f o
g 4 . T 11T T T 7T T TrrTrrrrr T rryrrrTrrrrrTrrraTd

0.0 30.0  40.0  50.0 80.0  70.0  80.0  90.0
i, THETA

—Y

i a CFig. (20a). (0./2%) in dB vs o at f = 16 GHz,
3 (e and 4= .5 m.

- 45




|

DB SOFT
10.0 20.0 30.0 40.0
A R U T T A U G W A R N0 O

1

1

o
3

! rrrrryrrrerrirreyrrirrryrrrerienrirvieruiruneilo
a $5.0 30.0 40.0 50.0 60.0 70.0 80.0  90.0

E THETA

Fig. (20b). (0g/32) in dB vs o' at f = 16 GHz, and
L= .5m.

(Note: only the average level but not the detail are to be
inferred from this curve since the sampling interval
chosen for 6% is not small enouah for indicating de-
tailed variations in og at 16 GHz.)

46




-—— g g

¥

¥

¥

OB HARD

20.0

-I‘i-l~LJIII1]f]rll!IITTI]|T1IllllTIllla
Ju.0 30.0  40.0  50.0  60.-0 70.0 0.0  90.0

THETA

Fig. (21a). (oh/Az) in dBvs o = THETA in deqrees
at f =1 GHz, and 4= 5

47



T | T g e

?U—- S:jII—FTTIl Iliﬂll'_-- E:I E-I'J T
o [HE F]
[n

in dB vs ei = THETA in degrees at

Fig..(21b). ( op/2 )
f=1GHz and & = .5 m.

48




L ]
4
1
-~
O—-
i o
j—-l
t —
1 \::
. o
¢ m—
!_- -
1 ;r DO.'—ﬁl[
av o
: - T N-
3 i I _
’ ' m —
3 " 0
. i o
i . —
y i C_"__‘
; i I
& 3. 4
3 -3
3 O
i, 1 > rvrao1r1trrrtrrrrrrevrrverrrirrriorrrr ettt
TR A Js.0  30.0 40.0 50.0 60.0  70.G  80.0  9U.0
" THETA
-]
T Fig. (22a). (op/2 2) in dB vs o' at f = 2 GHz, and
i 2= B m
e 7
T S

49




Bvs a' at f = 2 GHz,

m.

T W %
< [=2 £,
T <5
- IE
F" .
= ™
Fe— &
o e
[ ™
=
_____dd.,___,__&___H_“d__F.____..
D-0E 0D*0¢ D*0} 0 g0l- n-0e- 00t~

QdbH &80




D—
o
=3
.::):
o
oy
1:1'3;
a s
N
T —
P [:m —
| =
q-_u
4
k; O—
i Py rr+ 717 1r1r1+r1rr1rr17 17171717 7t 01T 71T 11T T 17T 7T P TiT T T TP T T
J J0.0  30.0  40.0  50.0  60.0  70.C  8§8.0  90.0
; THETA
A Fig. (23a). /x2 1n dB v5 @l at Te 4 Gho,
ana

51




20.0 30.0
Lk e r il d

10.0

0B HARD

«0
i O - < (i T e
o

TT ISHq&U

LU
4o0.0

[blo

mTTT1T1T1l
80.0  90.0

Fig. (23b). (% /Az) in dB vs o at f = 4 GHz,
ang k=

5 om.

52

[

e a4 [y [ e gy

[ T



D __H/__..-..f'“
>

Q2

m

i ' cé".TIn111HuunnlllI:IIHTnIHIHFTTM—
' <0.0 30.0 40.0 50.0 60.0 70.0 80.0 80.0

THETH

Fig. (24a). (0./22) in dB vs al at f = 8 GHz
ang = .5 m,

53




= T T Wl 1
s [ ]
Sedo HH-F I

THTr T T T T
74.0 80.0

Fig. (24b). g/xz) in dB vs o1 at f = 8 GHz,

54

TT 1T
90.0

i

[PreR— ey




ITITTWIIIIITTTIIIIITIIIIIITTIilIll

0.0

30.0 40.0 50.0 60.0 70.0 80.0

THETA

Fig. (25a). /22) in dB vs o' at f = 16 GHz,
ang = ,5m.

55

T1
9g0.0



40.0
|

|
|

IBERRLERRLRLLERR
.0 70.0 80.0 90.0

::IIIIIIIIII
; ®odo 30.0 0.0

Fig. (25b). (5,/2%) in dB vs ' at f = 16 GHz,

and £ = .5m,

(Note: only the average level but not the detail are to be
inferred from this curve since the sampling interval
chosen for 8 1is not small enough for indicatina
detailed variation in & at 16 GHz.)

56




5 riirrtrrrr ittt rerrriytrritrvrorr iy e iiririobl
Ju.6  30.0  40.0  50.0 60.0  70.0  60.U  90.0

F‘ THETA

o Dk i e et e

ndBvseiatf=1GHz

Fig. (26a). (oo/32) i
= il

and i

57




10.0 20.0 30.0
- 10 T ) O S i S ) e (0 6

0B SOFT

.0
1

'-_--_.._h‘\lh_
rTTT1 11 ) TR 1
o 30.0 uo. .

&0

-10.0

Fig. (26b). (S</

: (o 2) in dB vs o' at f = 1 GHz
] and & =

) I
£=1m,

58




,v.mv. N R T -

TIT T T T T T T T T T T T T T T T T T T T I T T T T T T T 11T
30.0 40.0 50.0 60.0 70.0 80.0 80.0

THETA

Fig. (27a). (o_/3%) in dB vs o1 at f = 2 GHz,
and £ = 1 m.

59




et

_ o
4 -
a o
.’ -
[

Fig. (27b). (¥s/22) in dB vs of at f = 2 GHz,
and £ = 1m,

60




B

N e e

0.0 3C.0 40.0  S0.0  B0.0  7G.G  80.0
THETA

Fig. (28a). (0./32) in dB vs o' at f = 4 GHz,
and x = 1 m.

61

foerrtrrrelrirrrrr et T iy T T T T T T TrTTT T

8C.0



30.0
L1t 111

20.0

i

10.0
S U U |

DB SOFT

M i
W‘h‘i‘g ' ‘ ”

[ T

’1000

{3

lllTllIllTllllTlllll]lllllI1llIllll.

THETR ’

Fig. (28b). (8¢/2%) in dB vs ol at f = 4 GHz,
and &= 1 m.

62



B R e ek bl R

OB SOFT

£0.0
i J

]

]

A A A D B A I AR O O O O O A O O A O O D O R B D O |

6.0

30.u  40.0  50.0  B0.0  7u.U
THETA

Fig. (29). (cc/38) in dB vs o' at f = 8 GHz,
and 2 = 1 m.

63

|

R

Su.0

80.0



40.0

20.0

UB HARD
|

?|ITTT1TI|TITIIII7II—[j]TTI1IIITIllle
20.0

30.0

Fig.

4.0 50.0  60.0  70.0  80.C
THETR
(30a). /Az in dB vs ei et f = 1 GHz,
ang L= 1m,

64

8u.u



[
J'\

|

i

J
T

¥

IK

\

N\
/

1 m.
5

1
i§
(6p/3%) in dB vs o at f= 1 GHz,

and <

rig.

Y\ AWAW W
']
(30b)

—

rT T T T T T T T T T 7T TTTTIOTTT I T TT T
0°0¢€ 0°0c¢ 0°01 Gl 0°01- 0°0¢- 0°0¢€-
085H €0

i s s el L et h AR




e

O-—
o
2_
_.4
=
o
2
. 1
o=
a. o
ST N
T~ -
N 7
[ T
O—_
5-1
5 O——‘
¥ X rri1r17 171717+ 711117117 t+17 17ttt Pt P Ty v o011 1T T3
' Ss.0  30.0  40.0 50.0  60.0  70.0  SU.0  SU.0
¥ THETR

Fig. (31a). (0p/3%) in dB vs o' at f = 2 GHz,
and £ =1 m.

66




i

™
- =3
—_— _ L
-— “ -
— | -
e -
er—— 7 2
e -~
w— e |-
=== I
..Hu..l!l...u "
e ey T ——
| R ©0
o= = o — L STt e
- 1wl
.l.L1|| — “l.
e e i e—

-
—foo—
e ——— —_

wdh‘}.\‘l' —

e :

= T

=

p—" e —— . o

p-—— AT

N
o
4

LI
0°0h

1

1

Tl
g°Cce 0°0¢

|

i

T T
0°01

ISR i

= ...Ao B .
"
™M
.
e
T 1 1 .h“ H
ﬁ_ o M.A,L

CHHH 80

I i
0+Ci- 0°0¢- 0-0¢€-

2 in dB vs ' at f = 2 GHz,

\\g/i

(31b).
an

[y

ig

L

1 m.

67




e . ol

50.0
i 1

t

DB HARD
20.0

%6.0

]lliIllTIIlllWlTlllllllllllllllllfl

30.¢  4U.0 5¢.0 60.0  7u.0  8U.C S0.0
THETA

Fig. (32a). (0,/22) in dB vs o' at f = 4 GHz,
and & = 1 m,

68



:j?f\‘ﬂd\ Y | I“’JI |

N I‘ .,,‘ ‘ i l ,: '_..

9 i un' HR",‘""'\'M A/(l"“v,“{!,.","‘A!"‘;‘ i

L7 j}“\ 1 AH:‘['i,\‘ l'[‘,!; ; L P ,

i I TR N

e R IR R !.-. ’q?itY ':\F(::‘ ‘t.‘.‘: Alia }‘ .“Iq’ifléjrol i FT_‘ ln
! J. a?- J' h‘lC.TL i. ) . J

E Fig. (32b). (% /AZ) in dB vs o) at f = 4 GHz ,
ang g=1m

69




aQ
{ a-
| aT
; I
k 8 8]
} fam|
;5

30.0
t 1

1

%0.0

rerrtrrrrrr iy rerrirr e it

30.0

40.0

50.0

60.0

THETA

70.U

e
80.0 3.0

Fig. (33). (o /Az) in dB vs o' at f = 8 GHz,

and ¥ = 1m,



IV. RECOMMENDATIONS FOR FUTURE WORK

It is seen from the present work that the RCS of the cylinder in
Fig. 1 is strongly dependent on the surface impedance Zg through its
associated reflection coefficient. Consequently, it would be worth
looking into the effects of a periodically modulated impedance surface
rather than a planar impedance surface. The effect of the periodically
modulated impedance surface may be taken into consideration via the
Floguet solution for the scattering from such a surface (e.g., the
Floguet solution for the sinusoidally modulated surface is available
in the literature); the scattered field may be represented as a set
cf plane waves with different weightings, and different angles of
incidence. The effects of each plane wave component of the scattered
field upon the truncated cylinder may then be analyzed approximately via
GTD. This analysis would of course be more difficult than the one
performed in the present report; however, it does not appear to be
intractable.

It is seen that the double reflection interaction (i.e., reflections
between the surface impedance boundary and the cylinder of Fig. 1)
together with the edge diffraction and surface reflection interactions
illustrated in Figs. 2(a) and 2(b), respectively, provide the dominant
contribution to the backscattered field. It would be worth lcoking
into ways to control the backscattered field and hence the RCS due to
these interactions by coating the cylinder with a lossy dielectric or
an absorber; also, the diffraction from the top edges of the
cylinder could be controlled by incorporating appropriately oriented
slots in the neighborhood of this cylinder end cap edge. In order to
decuce the diffraction coefficient for an edge with a thin
dielectric coating, and with a slot in its immediate vicinity,

e new canonical probiem must be solved; however, such a problem
may net be amenable to a simple analytical solution. But, one
could resort to a hybrid GTD-moment method technique to numeric-
ally deduce the appropriate diffraction coefficient for different
angles of incidence; while this numerical solution is also more
complex than the one treated in the present report, it is still
feasible.
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